🤿 Matura Rozszerzona Z Matematyki Wymagania
Matura MATEMATYKA rozszerzona 2021. Arkusz CKE, ODPOWIEDZI. "Matura z matematyki na poziomie rozszerzonym okazała się bardzo ciężka" 13.05.
Matura rozszerzona 2023. Terminy, daty, godziny Matura ustna z języka polskiego. Wymagania. Egzamin z matematyki na poziomie podstawowym - 180 minut;
Harmonogram przedstawia się następująco: 6 grudnia 2023 (środa), godz. 9:00 – język polski na poziomie podstawowym (240 minut); 7 grudnia 2023 (czwartek), godz. 9:00 – matematyka na
W roku 2024 egzamin maturalny z matematyki w Formule 2023, będzie zgodny z wymaganiami egzaminacyjnymi określonymi w Aneksach do Informatorów opublikowanych na stronie CKE. Wymagania szczegółowe, które zostały anulowane z poziomu podstawowego, są jednocześnie anulowane z poziomu rozszerzonego.
Wymagania edulacyjne na egzamin ósmoklasisty w roku 2023/2024 Matura 2023 czerwiec matematyka rozszerzona CKE formuła 2023 - odpowiedzi i rozwiązania
Egzamin maturalny z matematyki (poziom rozszerzony). Test diagnostyczny – marzec 2021 r. Strona 2 z 24 Uwaga: Akceptowane są wszystkie rozwiązania merytorycznie poprawne, spełniające warunki zadania. Gdy wymaganie egzaminacyjne dotyczy treści z III etapu edukacyjnego – dopisano „G”. Zadanie 1. (0–1) Wymagania egzaminacyjne 20211
Barbara Wesoła. 22 listopada 2023, 10:36. Uczniowie w tysiącach szkół piszą próbną maturę z matematyki Tomasz Czachorowski. Matura próbna z matematyki (poziom podstawowy i rozszerzony) z
W przypadku egzaminu z matematyki na poziomie podstawowym również zredukowano wymagania o ok. 25%. Uczniowie mają także do rozwiązania więcej zadań zamkniętych (mogą z nich zyskać nawet 29 punktów, zamiast 25). Zmniejszono tym samym liczbę zadań otwartych, do 7-13 (zamiast 9-15).
analizuje równania i nierówności liniowe z parametrami oraz równania i nierówności kwadratowe z parametrami, w szczególności wyznacza liczbę rozwiązań w zależności od parametrów, podaje warunki, przy których rozwiązania mają żądaną własność, i wyznacza rozwiązania w zależności od parametrów.
Szczegółowe wymagania do każdego z powyższych zagadnień można znaleźć na oficjalnej stronie Centralnej Komisji Egzaminacyjnej (pod tym linkiem). Wszyscy, którzy przystępują lub przystępowali do egzaminu z rozszerzonej matematyki w ubiegłych latach, są zgodni, że jest to jedno z najbardziej wymagających wyzwań.
Na maturze 2024 z matematyki wciąż obowiązywać będzie okrojony zakres ujęty w wymaganiach egzaminacyjnych, a nie podstawie programowej. Matura z matematyki na poziomie podstawowym będzie
Zdający spełnia wymagania określone dla poziomu podstawowego, a ponadto: 1) zapisuje za pomocą listy kroków, schematu blokowego lub pseudokodu, i implementuje w wybranym języku programowania, algorytmy poznane na wcześniejszych etapach oraz algorytmy: a) algorytm Euklidesa w wersji iteracyjnej i rekurencyjnej wraz z zastosowaniami,
SnQcm. Na tej stronie zebrałem najbardziej typowe pytania i zadania, które pojawiają się na maturze podstawowej z matematyki. Do każdego zagadnienia podałem przykładowe zadania z oficjalnych arkuszy CKE oraz źródła do nauki. Dla każdego tematu podałem średnią liczbę punktów procentowych, które można zdobyć na maturze znając dane zagadnienie. Jeśli nauczysz się i zrozumiesz poniższe zagadnienia, to będziesz przygotowany do matury podstawowej na minimum 50%. Poniższe zestawienie nie zawiera pełnej wiedzy wymaganej na maturze, a jedynie najważniejsze zagadnienia do nauczenia. Kompletną wiedzę wymaganą do zdania matury na 100% znajdziesz w Kursie do matury. Poziom Podstawowy 1. Czy umiesz wykonywać działania na ułamkach, potęgach i pierwiastkach? [2% - 6%] Czy umiesz upraszczać wyrażenia typu: \(5^7\cdot 5^{13}\), \(\frac{3^5\cdot \sqrt[5]{3}}{9^2}\), \(\sqrt[7]{16}\cdot 8^{\frac{3}{2}}\)? Szczegółowe omówienie tego zagadnienia znajdziesz w Kursie do matury (części 1 - 5). Przykładowe zadania z oficjalnych matur: Matura 2017 maj (zadanie 1 i 2) Matura 2017 sierpień (zadanie 1, 2 i 5) Matura 2016 maj (zadanie 1) Matura 2016 sierpień (zadanie 3) Wykonywanie działań na ułamkach, potęgach i pierwiastkach często przydaje się też w innych zadaniach. Dlatego warto dobrze to opanować. 2. Czy umiesz wykonywać proste działania na logarytmach? [2%] Czy umiesz obliczyć: \(\log_327\), \(\log_23+\log_2\frac{16}{3}\)? Szczegółowe omówienie tego zagadnienia znajdziesz w Kursie do matury (część 6). Przykładowe zadania z oficjalnych matur: Matura 2017 maj (zadanie 3) Matura 2017 sierpień (zadanie 3) Matura 2016 maj (zadanie 2) Matura 2016 sierpień (zadanie 4) Praktycznie zawsze na maturze jest jedno zadanie z logarytmów. 3. Czy umiesz liczyć procenty? [2%] Szczegółowe omówienie tego zagadnienia znajdziesz w Kursie do matury (część 9). Przykładowe zadania z oficjalnych matur: Matura 2017 maj (zadanie 4) Matura 2017 sierpień (zadanie 4) Matura 2016 maj (zadanie 3) Matura 2016 sierpień (zadanie 2) Praktycznie zawsze na maturze jest jedno zadanie na liczenie procentów. 4. Czy znasz i umiesz stosować wzory skróconego mnożenia? [2%] Czy umiesz rozpisać: \((\sqrt{2}-3)^2\), albo obliczyć \((\sqrt{5}-\sqrt{7})(\sqrt{5}+\sqrt{7})\)? Szczegółowe omówienie tego zagadnienia znajdziesz w Kursie do matury (część 10). Przykładowe zadania z oficjalnych matur: Matura 2017 maj (zadanie 5) Matura 2017 sierpień (zadanie 5) Matura 2016 maj (zadanie 4) Matura 2016 sierpień (zadanie 5) Praktycznie zawsze na maturze jest jedno zadanie ze skróconego mnożenia. Dodatkowo stosowanie wzorów skróconego mnożenia często przydaje się też w innych zadaniach. 5. Czy umiesz rozwiązywać równania i nierówności liniowe oraz analizować funkcję liniową? [6% - 10%] Czy umiesz rozwiązać: \(\sqrt{3}x-7=3\), \(\frac{3x}{2}+\sqrt{5}\ge 0\)? Czy umiesz wyznaczyć miejsca zerowe funkcji: \(f(x)=\frac{\sqrt{2}}{3}x-2\sqrt{2}\)? Czy funkcja \(g(x)=\frac{3\sqrt{2}}{2}x-1\) jest równoległa albo prostopadła do \(f(x)\)? Czy umiesz wyznaczyć punkt przecięcia dwóch prostych? Czy umiesz wyznaczyć równanie prostej równoległej do \(f(x)\) oraz przechodzącej przez punkt \(A=(1,2)\)? Szczegółowe omówienie funkcji liniowej oraz równań i nierówności liniowych znajdziesz w Kursie do matury (części 11, 13, 23, 24, 25, 30, 47, 48, 49 oraz 50). Przykładowe zadania z oficjalnych matur: Matura 2017 maj (zadanie 7, 9 i 19) Matura 2017 sierpień (zadanie 6, 8, 20 i 21) Matura 2016 maj (zadanie 6, 8, 9 i 20) Matura 2016 sierpień (zadanie 5, 7 i 14) 6. Czy umiesz rozwiązywać równania i nierówności kwadratowe oraz analizować funkcję kwadratową? [10% - 20%] Czy umiesz rozwiązać: \(x^2-3x-7=0\), \((x-1)(x+2)(x-5)=0\), \((x-3)(2x+5)\ge 0\)? Czy dla funkcji kwadratowej \(f(x)=2x^2+10x+12\) umiesz wyznaczyć postać kanoniczną i iloczynową? Czy potrafisz znaleźć miejsca zerowe oraz współrzędne wierzchołka? Szczegółowe omówienie równań i nierówności kwadratowych oraz funkcji kwadratowej znajdziesz w Kursie do matury (części 14 - 18 oraz 26 - 30). Przykładowe zadania z oficjalnych matur: Matura 2017 maj (zadanie 5, 6, 8, 10, 26 i 29) Matura 2017 sierpień (zadanie 10, 26, 27, 32) Matura 2016 maj (zadanie 10, 11, 27, 28) Matura 2016 sierpień (zadanie 6, 10, 26, 29) Na maturze praktycznie zawsze jest zadanie na rozwiązanie nierówności kwadratowej za 2 punkty. 7. Czy umiesz wykonywać działania na ciągu arytmetycznym i geometrycznym? [4% - 12%] Czy wiesz jak obliczyć siódmy wyraz ciągu arytmetycznego \((a_n)\) znając \(a_1=1\) oraz \(a_3=3\)? Czy umiesz wykonać to samo polecenie jeśli \((a_n)\) jest geometryczny?Czy umiesz obliczać różnicę ciągu arytmetycznego i iloraz ciągu geometrycznego? Czy umiesz obliczyć sumę \(100\) pierwszych wyrazów ciągu arytmetycznego? Szczegółowe omówienie ciągów znajdziesz w Kursie do matury (części 34 - 37). Przykładowe zadania z oficjalnych matur: Matura 2017 maj (zadanie 12, 13 i 31) Matura 2017 sierpień (zadanie 11, 12, 31) Matura 2016 maj (zadanie 14, 15, 30) Matura 2016 sierpień (zadanie 8, 11, 31) Na maturze praktycznie zawsze w części zamkniętej jest jedno zadanie z ciągu arytmetycznego i jedno z geometrycznego. Ponadto w części otwartej zazwyczaj jest jedno zadanie z ciągu za 2 punkty, ale może zdarzyć się nawet za 4 - 5 punktów. 8. Czy wiesz jak liczyć średnią arytmetyczną, medianę oraz błąd względny i bezwzględny? [2% - 6%] Szczegółowe omówienie ciągów znajdziesz w Kursie do matury (części 7 i 60). Przykładowe zadania z oficjalnych matur: Matura 2017 maj (zadanie 24) Matura 2017 sierpień (zadanie 23) Matura 2016 maj (zadanie 25 i 26) Matura 2016 sierpień (zadanie 23) 9. Czy umiesz wykonywać proste obliczenia trygonometryczne? [2% - 6%] Czy wiesz jak obliczyć sinus znając cosinus, albo odwrotnie? Czy umiesz odczytać wartości funkcji trygonometrycznych w trójkącie prostokątnym? Szczegółowe omówienie trygonometrii znajdziesz w Kursie do matury (części 38 - 42). Przykładowe zadania z oficjalnych matur: Matura 2017 maj (zadanie 14) Matura 2017 sierpień (zadanie 13) Matura 2016 maj (zadanie 17) Matura 2016 sierpień (zadanie 9, 16) 10. Czy umiesz wykonywać proste obliczenia w geometrii płaskiej, przestrzennej i analitycznej? [20% - 40%] Czy umiesz obliczyć pole kwadratu znając długość jego przekątnej? Czy umiesz obliczyć pole trójkąta równobocznego znając długość jego wysokości? Czy w jakim stosunku przecinają się wysokości w trójkącie równobocznym? Czy umiesz rozpoznawać trójkąty podobne i budować równania na podstawie podobieństwa (twierdzenia Talesa)? Czy wiesz jaka zależność łączy kąt wpisany i środkowy w okręgu, jeśli są oparte na tym samym łuku? Czy umiesz obliczyć długość oraz środek odcinka o podanych punktach końcowych? Czy umiesz obliczyć pole i objętość prostopadłościanu, ostrosłupa, stożka oraz walca? Szczegółowe omówienie geometrii płaskiej, przestrzennej oraz analitycznej znajdziesz w Kursie do matury (części 43 - 59). Przykładowe zadania z oficjalnych matur: Matura 2017 maj (zadanie 15, 16, 17, 20, 21, 22, 23, 28, 30, 32, 34) Matura 2017 sierpień (zadanie 4, 14 - 19, 22, 33, 34) Matura 2016 maj (zadanie 7, 13, 16, 18, 19, 21, 23, 24, 32, 33) Matura 2016 sierpień (zadanie 15, 17 - 22, 30, 32, 33) Zadań z geometrii jest zazwyczaj na maturze dużo. Warto znać przynajmniej te podstawowe typy zadań, ponieważ mogą nam one dać często bardzo cenne kilka lub kilkanaście procent. Poziom Rozszerzony Poniżej podaję listę zagadnień, które mają największą szansę pojawić się na maturze rozszerzonej. 1. Czy umiesz wykonywać działania na potęgach, logarytmach i korzystać ze wzorów skróconego mnożenia? [2% - 4%] Czy umiesz rozpisać wyrażenie: \((3x^2-5)^3\)? Czy umiesz uprościć wyrażenie: \(\left(\sqrt{5-\sqrt{2}}-\sqrt{5+\sqrt{2}}\right)^2\)? Czy umiesz obliczyć \(\log_336-\frac{1}{\log_43}\)? Szczegółowe omówienie tego tematu znajdziesz w Kursie do matury rozszerzonej (część 2 i 3). Przykładowe zadania z oficjalnych matur: Matura 2018 maj (zadanie 1 i 3) Matura 2017 maj (zadanie 1) Matura 2016 maj (zadanie 1) Matura 2015 maj (zadanie 3) 2. Czy umiesz liczyć granice? [2% - 4%] Czy umiesz liczyć granice typu: \(\lim_{n \to \infty} \frac{(5n^3-3n^2+1)(2n+7)}{3n-7n^4}\)? Czy umiesz liczyć granice funkcji w punkcie: \(\lim_{x \to 2^-} \frac{(x-2)(x+3)}{x^2-4x +4}\)? Szczegółowe omówienie sposobu liczenia granic znajdziesz w Kursie do matury rozszerzonej (część 23). Przykładowe zadania z oficjalnych matur: Matura 2018 maj (zadanie 4) Matura 2017 maj (zadanie 2) Matura 2016 maj (zadanie 5) Matura 2015 maj (zadanie 6) 3. Czy umiesz rozwiązywać równania i nierówności z wartością bezwzględną? [2% - 6%] Czy umiesz rozwiązywać: \(|x+1|-|x-5|=3\), \(|x-1|+|x-4|>5\)? Szczegółowe omówienie wartości bezwzględnej znajdziesz w Kursie do matury rozszerzonej (część 1). Przykładowe zadania z oficjalnych matur: Matura 2018 maj (zadanie 2) Matura 2016 maj (zadanie 3) Matura 2015 maj (zadanie 1 i 2) Zadania treningowe CKE (zadania 11-15) 4. Czy umiesz rozwiązywać równania i nierówności trygonometryczne? [2% - 8%] Czy umiesz rozwiązać: \(2\sin x=1\), \(\cos 2x\lt \cos x\)? Szczegółowe omówienie metod rozwiązywania równań i nierówności trygonometrycznych znajdziesz w Kursie do matury rozszerzonej (części 25-30). Przykładowe zadania z oficjalnych matur: Matura 2018 maj (zadanie 11) Matura 2017 maj (zadanie 10) Matura 2016 maj (zadanie 11) Matura 2015 maj (zadanie 4) 5. Czy umiesz badać liczbę rozwiązań równania kwadratowego z parametrem, które dodatkowo ma spełniać podane warunki? [10% - 12%] Czy znasz i umiesz stosować wzory Viete'a? Omówienie tego zagadnienia znajdziesz w Kursie do matury rozszerzonej (części 9-10). Przykładowe zadania z oficjalnych matur: Matura 2018 maj (zadanie 12) Matura 2017 maj (zadanie 12) Matura 2016 maj (zadanie 12) Matura 2015 maj (zadanie 13) 6. Czy umiesz rozwiązywać zadania optymalizacyjne? [14%] Omówienie tego zagadnienia znajdziesz w Kursie do matury rozszerzonej (część 54). Przykładowe zadania z oficjalnych matur: Matura 2018 maj (zadanie 15) Matura 2017 maj (zadanie 15) Matura 2016 maj (zadanie 16) Matura 2015 maj (zadanie 16) 7. Czy umiesz liczyć pochodne i dobrze rozumiesz pojęcie stycznej do wykresu funkcji? [6-8%] Omówienie tego zagadnienia znajdziesz w Kursie do matury rozszerzonej (część 51). Przykładowe zadania z oficjalnych matur: Matura 2018 maj (zadanie 6) Matura 2017 maj (zadanie 6) Matura 2016 maj (zadanie 4) Matura 2015 maj (zadanie 12) 8. Czy umiesz rozwiązywać zadania z kombinatoryki i rachunku prawdopodobieństwa? [6-8%] Czy znasz i umiesz stosować regułę mnożenia oraz symbol Newtona? Czy znasz prawdopodobieństwo warunkowe i całkowite? Omówienie tego zagadnienia znajdziesz w Kursie do matury rozszerzonej (części 46-48). Przykładowe zadania z oficjalnych matur: Matura 2018 maj (zadanie 9) Matura 2017 maj (zadanie 11) Matura 2016 maj (zadanie 14) Matura 2015 maj (zadanie 11) 9. Czy wiesz jak rozwiązywać zadania z resztą z dzielenia wielomianów? [2-4%] Omówienie tego zagadnienia znajdziesz w Kursie do matury rozszerzonej (część 12). Przykładowe zadania z oficjalnych matur: Matura 2017 maj (zadanie 5) Matura 2016 maj (zadanie 2) 10. Czy wiesz jak rozwiązywać zadania z ciągów arytmetycznych i geometrycznych oraz szeregów? [4-12%] Omówienie tego zagadnienia znajdziesz w Kursie do matury rozszerzonej (części 22-24). Przykładowe zadania z oficjalnych matur: Matura 2018 maj (zadanie 13) Matura 2017 maj (zadanie 14) Matura 2016 maj (zadanie 7) Matura 2015 maj (zadanie 15) 11. Czy znasz i umiesz stosować twierdzenia przydatne w geometrii płaskiej, przestrzennej i analitycznej? [16-26%] Czy znasz twierdzenie sinusów i cosinusów? Czy umiesz stosować twierdzenie Talesa i twierdzenie odwrotne? Czy wiesz co to jest jednokładność i podobieństwo? Czy wiesz kiedy na czworokącie można opisać okrąg oraz kiedy można wpisać okrąg w czworokąt? Czy znasz równanie okręgu? Czy wiesz jak obliczyć odległość punktu od prostej? Czy umiesz wykonywać rachunki na wektorach? Czy umiesz wyznaczać przekroje brył? Omówienie tego zagadnienia znajdziesz w Kursie do matury rozszerzonej (części 31-54). Przykładowe zadania z oficjalnych matur: Matura 2018 maj (zadanie 7, 10, 14) Matura 2017 maj (zadanie 3, 4, 8, 9, 13) Matura 2016 maj (zadanie 9, 13, 15) Matura 2015 maj (zadanie 5, 9, 10, 14)
Matura matematyka 2022Matura z matematyki jest powszechnie uznawana za najtrudniejszą spośród obowiązkowych części egzaminu. Budzi największy niepokój wśród zdających, a statystyki potwierdzają te obawy. Zdawalność tego przedmiotu była w 2021 roku średnio o 10% niższa niż w przypadku sekcji z języka polskiego czy wiadomość jest taka, że matura z matematyki 2022 pozostaje w okrojonej formie:28 pytań zamkniętych = 28 punktów (bez zmian);7 pytań otwartych = 17 widać, arkusz będzie zawierał mniej zadań otwartych (7 zamiast 9). Egzamin będzie natomiast trwał tyle samo co zawsze (tj. 170 minut). Oznacza to nie tylko zwiększoną ilość czasu na rozwiązywanie zadań, ale także większy udział pytań zamkniętych (z reguły prostszych) w ogólnym wyniku matury z matematyki 2022 to kolejna nowość. Maksymalny wynik to 45, a nie 50 punktów, jak było to do 2020 modyfikacją jest okrojony zakres materiału do matury z matematyki 2022. Tegoroczni zdający nie muszą przygotowywać się z obliczania kątów w ostrosłupach czy wyznaczania odchylenia standardowego. To duża szansa, pozwalająca poświęcić więcej pracy pozostałym zagadnieniom, a co za tym idzie – uzyskać lepszy wynik na maturze z matematyki!Matura rozszerzona matematyka 2022Rozszerzona matura z matematyki 2022 ma taką samą budowę i punktację, jak przed pandemią Covid-19. Składa się z 15 zadań (w większości otwartych) i trwa 180 minut. Od podstawy różni się przede wszystkim poziomem zaawansowania oraz liczbą i rozkładem pytań. Czas na rozwiązanie arkusza jest tylko nieco dłuższy – o 10 minut. Maksymalny wynik to 50 punktów. Spośród 15 zadań tylko 4 są zamknięte – wymagają wybrania jednego spośród czterech dostępnych wariantów. Mają zdecydowanie mniejszy udział w maksymalnym wyniku, niż w przypadku matury na poziomie podstawowym. Są jednak punktowane tak samo, czyli za dwa typy pytań ocenia się otwarte krótkiej odpowiedzi – polegające na obliczeniu jednej wartości, która stanowi wynik:matura podstawowa (0-2 punkty),rozszerzona (0-2, 0-3 lub 0-4 punkty).Pytania otwarte długiej odpowiedzi – kilkuetapowe, wymagające dobrania odpowiedniej strategii do poprawnego rozwiązania zadania:matura podstawowa (0-4, 0-5 lub 0-6 punktów),rozszerzona (0–5, 0–6 albo 0–7 punktów).Rozszerzona matura z matematyki wymaga zdecydowanie lepszego przygotowania merytorycznego oraz pracy. Dobry wynik może jednak pomóc w zakwalifikowanie się na ciekawe kierunki studiów. Są to ekonomia, inżynieria, astronomia, transport (logistyka) czy technologia 2022 – kiedy?Matura 2022 odbędzie się w trzech terminach:podstawowym: 4-23 maja;dodatkowym (dla osób, które z losowych przyczyn nie mogły przystąpić do egzaminu w maju): 1-15 czerwca;poprawkowym (dla osób, którym nie udało się zdać jednego z przedmiotów): 23 sierpnia o godzinie 9: z matematyki 2022 w terminie podstawowym odbędzie się 5 maja o godzinie 9:00 (poziom podstawowy) oraz 11 maja o 9:00 (rozszerzenie). Deklaracja maturalna 2022 – do kiedy?Deklaracja maturalna to dokument, który umożliwia zgłoszenie chęci do przystąpienia do egzaminu dojrzałości. Zawiera pola na dane osobowe i kontaktowe, a także informacje dotyczące matury ( wybrane przedmioty dodatkowe). Są trzy rodzaje tego dokumentów (dla różnych zdających), jednak zdecydowana większość maturzystów wypełnia deklarację A (dostępną tutaj). Wypełniony dokument należało złożyć do 30 września 2021 roku, jednak ostateczny termin upływa dopiero 7 lutego 2022 o pozostałych deklaracjach i harmonogramie ich składania można szukać na stronach internetowych OKE – np. pod tym adresem (wzory dokumentów w poszczególnych komisjach są takie same). Matura 2022 matematyka – wymaganiaWymagania na maturę 2022 z matematyki to przede wszystkim wiedza, dobre nastawienie i przybory, które umożliwią rozwiązywanie zadań (i zapewnią bezpieczeństwo sanitarne). Co zabrać na maturę z matematyki?Rzeczy, które należy wziąć z domu to:linijka,kalkulator prosty,cyrkiel (+ ołówek),długopis/pióro (z czarnym atramentem),maseczka/ element to tablica wzorów, którą zapewnia placówka egzaminacyjna (szkoła). Na salę nie można wnosić jedzenia ani amuletów przynoszących szczęście – o posiłku należy pomyśleć przed maturą, a powodzenie na egzaminie zawdzięczyć potędze swojego umysłu. Każdy kandydat ma prawo mieć przy sobie chusteczki higieniczne i wodę w przezroczystej butelce. Miejsce tych rzeczy jest zazwyczaj na podłodze. Korepetycje matura – matematyka Korepetycje do matury z matematyki to najlepszy sposób na osiągnięcie satysfakcjonującego wyniku. Lagunita Education oferuje kurs, na który składa się 80 intensywnych, półgodzinnych sesji z wykwalifikowanym tutorem. Zapewniamy niezbędne materiały (podręcznik i testy poziomujące), które pomagają nam opracować indywidualną strategię to czeka na Ciebie online, bez wychodzenia z domu – umów się na korepetycje z Lagunitą! Zosia opowiada jak dostać się na najlepsze studia w Polsce Oceń artykuł: Średnia 5/5 na podstawie 1 opinii.
matura rozszerzona z matematyki wymagania